Green’s Function and Convergence of Fourier Series for Elliptic Differential Operators with Potential from Kato Space

نویسندگان

  • Valery Serov
  • Martin D. Schechter
چکیده

and Applied Analysis 3 for all f ∈ C∞ 0 Ω . Since Aμ A μI is positive for sufficiently large μ it has a positive self-adjoint Friedrichs extension Aμ F such that D (( Aμ ) F ) ⊂ ◦ W m 2 Ω . 1.9 We define the Friedrichs extension of A Aμ − μI to be AF Aμ F − μI such that D AF ⊂ ◦ W m 2 Ω . 1.10 The domain of AF is given by D AF { f ∈ ◦ W m 2 Ω | Af ∈ L2 Ω } . 1.11 It is also well known that this extension has a purely discrete spectrum {λk}k 1 of finite multiplicity having the only one accumulation point at infinity λk → ∞ and a complete orthonormal system {uk x }k 1 of eigenfunctions in L2 Ω . To each function f ∈ L2 Ω we can assign the formal series

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Dimensional Interfacial Green’s Function for Exponentially Graded Transversely Isotropic Bi-Materials

By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-p...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

Green’s Formulas for Cone Differential Operators

Green’s formulas for elliptic cone differential operators are established. This is done by an accurate description of the maximal domain of an elliptic cone differential operator and its formal adjoint, thereby utilizing the concept of a discrete asymptotic type. From this description, the singular coefficients replacing the boundary traces in classical Green’s formulas are deduced. CONTENTS

متن کامل

Fundamental Steady state Solution for the Transversely Isotropic Half Space

Response of a transversely isotropic 3-D half-space subjected to a surface time-harmonic excitation is presented in analytical form. The derivation of the fundamental solutions expressed in terms of displacements is based on the prefect series of displacement potential functions that have been obtained in the companion paper by the authors. First the governing equations are uncoupled in the cyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010